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Abstract 

A topology is characterized on Cµ,ν(Y, Z), the assortment of continuous mappings between two generalized 

topologies on Y and Z. Using continuous convergence of g-nets, acceptability and it are described to part Ness. The 

(µ, ν)- topology on Cµ,ν(Y, Z) is viewed as acceptable. Point-open topology and reduced open topology are 

characterized and investigated for generalized topological spaces. 
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Introduction 

Investigations into the different parts of the function spaces between topological spaces has been a functioning area 

of examination in topology. A few examination papers have come up as of late dealing with various qualities of 

these spaces as well as highlighting a few immaculate issues. Nonetheless, in spite of this, one perspective actually 

stays unanswered in this regard. What occurs, on the off chance that Y and Z are furnished with generalized 

topological designs? The issue has become more relevant considering the way that in numerous areas of 

examination, where topological methodology is being applied, we go over structures which don't shape a topology, 

yet is a generalized type of topology. 
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Preliminaries 

Definition 2.1. Let X be a non-empty set. A collection G of subsets of X is called a generalized topology (GT, in 

brief) on X if 

 

The members of G are called generalized open sets (g-open sets, in brief), their complements are called generalized 

closed sets (g-closed sets, in brief). 

Definition 2.2. Let (X, µ) and (Y, ν) be two GT S′ s. Then a map f: X → Y is said to be (µ, ν)-continuous if for U 

∈ ν implies f −1 (U) ∈ µ, for every U ∈ ν. 

It may be shown that f is continuous if and only if it is continuous for each x ∈ X, that is, for each neighborhood V 

of f(x), there exists a neighborhood U of x such that f(U) ⊆ V. The proof of the same is provided at the end of this 

section. 

Now onward we write (µ, ν)-continuity as simply continuity unless there is any ambiguity. 

In comparison of nets for general topology, generalized nets (g-nets, in brief) are developed for generalized 

topological spaces. 

Definition 2.3. 

A pre-ordered set is a pair (D, ≥) where D is a non-empty set and ≥ is binary relation in D which is reflexive and 

transitive. 

Let X be a non-empty set and (D, ≥) be a pre-ordered set. A mapping s: D → X is called generalized net (g-net, in 

brief) on X. For n ∈ D, s(n) is denoted by sn. 

Convergence and sub net of a g-net are defined the way it is done for a net in topology. Below we provide the 

definitions of regular points and saddle points for generalized topological spaces. 

Definition 2.4. Let (X, µ) be a generalized topological space. Then a point x ∈ X is called a saddle point if there 

does not exist any open neighborhood U of x. A point is called a regular point if it is not a saddle point. 

Now we provide the proof of our proposed result about continuity: 
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Proposition 2.5. Let (X, µ) and (Y, ν) be two GT S′ s and f : X → Y be any mapping. Then the following are 

equivalent: 

 f is continuous;  

 inverse image of all generalized closed sets is closed;  

 for every regular point x and any neighborhood V of f(x), there exists a neighborhood U of x such that f(U) 

⊆ V;  

 for each g-net {sn}n∈D converging to x, the image g-net {f(sn)}n∈D converges to f(x).  

 f is continuous at each x ∈ X, that is, for each neighborhood V of f(x), there exists a neighborhood U of x 

such that f(U) ⊆ V. 

 

A topology on Cµ,ν(Y, Z) 

Let (Y, µ) and (Z, ν) be two GT S′ s. For U ∈ µ, V ∈ ν and any non-empty subset F of ZY, we define 

 

where ZY is the collection of all the functions from (Y, µ) to (Z, ν) and F ⊆ ZY. Let Sµ,ν = {(U, V ) | U ∈ µ, V ∈ ν}. 

Definition 3.1. Sµ,ν is a sub basis for a topology on F. 

Proof. For f ∈ F, we have, f(∅) ⊆ V , for each V ∈ ν. As ∅ ∈ µ, we get f ∈ (∅, V ) for each V ∈ µ. Therefore ∪ Sµ,ν 

= F. 
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Conclusion 

The emergence of topology in the development of a few rough functions will be the bridge for some applications 

and will find the secret relations between information. Topological generalizations of the idea of rough functions 

open the way for connecting rough coherence with the area of close to continuous functions. Utilizations of 

topological rough functions of data systems open the entryway about the numerous changes among various kinds 

of data systems, for example, multivalued and single-esteemed data systems. 
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